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Abstract—One of the most distinguishing features of vehicu-
lar ad hoc networks (VANETs) is the increased mobility of the
nodes. This results in the existence of transient communication
links, which degrade the performance of developed protocols.
Established routes frequently become invalid, and existing com-
munication flows are interrupted, incurring delay and additional
overhead. In this paper, we aim to provide a metric to support
the design of networks that can proactively adapt to a constantly
changing topology. We present a method that produces a link-
lifetime-related metric capable of capturing the remaining time for
which a link can be used for efficient communication. The metric
is intended to be used to optimize route construction with respect
to lifetime. We propose a cross-layer approach, which utilizes
physical layer information, and formulate the relevant parameter
estimation problem. Contrary to existing work, the method does
not assume knowledge of the transmission power or the nodes’ po-
sition and velocity vectors, or adoption of a specific mobility model,
whereas the estimates go beyond describing the tendency of link
quality. We achieve this by employing a unified model that accu-
rately captures the effect of the radio propagation and the underly-
ing structure of vehicle movement on the temporal dependence of
the quality of a wireless mobile link. More specifically, the model
takes into account the inherent nonlinearities arising and, most
importantly, includes the minimum distance that will be achieved
between two vehicles on the course of their movement, which is
shown to play a crucial role in the link duration. We present an
analytical framework, which quantifies the probability of correctly
identifying the longest living link between two given links, based
on the estimates. Utilization of the estimates is shown to lead to op-
timal performance under ideal channel conditions. The proposed
scheme outperforms existing affinity-based schemes, achieving to
opt for links that last up to 35% longer under the presence of
shadow fading. Finally, we discuss the integration of the proposed
estimation method in routing and demonstrate that our estima-
tions can be beneficial, leading to the construction of routes that
consistently last longer than routes that have been constructed
based on the smoothed signal-to-noise ratio metric.

Index Terms—Link lifetime estimation, link residual time
(LRT), vehicular ad hoc networks (VANETs), vehicle-to-vehicle
communications.
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I. INTRODUCTION

THE FIELD of vehicular ad hoc networks (VANETs) is
constantly drawing research attention due to their wide

range of technological applications and the technical challenges
they exhibit. Forming a subclass of mobile ad hoc networks
(MANETs), VANETs are distinctive from generic MANETs
in many ways [1]. The most prominent feature of VANETs
is the high mobility of the nodes, which is the underlying
cause of a series of VANET-specific attributes requiring the
development of applicable solutions. Transient connectivity due
to node mobility is an inherent attribute of all mobile networks,
which becomes even more evident in the case of vehicular
communications. This causes significant problems as commu-
nication is disrupted very often, resulting in poor performance.
The constantly changing topology has numerous adverse effects
on the efficiency of the operations of higher layers on the
protocol stack. More specifically, routing design for VANETs
is particularly challenging. As the dynamics involved imply
that the underlying connectivity capabilities change rapidly,
collected routing information becomes stale, and established
communication routes become invalid in a short time. The
resulting disruption of information flow causes considerable
delays, and route reconstruction depletes a significant amount
of network resources.

Toward the goal of efficient design of VANETs, the aim of
this paper is to develop a method that will allow the estimation
of the time for which an existing route will continue to operate
satisfactorily, which is defined as the route residual time (RRT),
and demonstrate how such a method may be integrated in rout-
ing protocols. For the route to continue to be valid for a given
period of time, all the individual links comprising the route
need to continue to be available. In other words, the lifetime
of a route is determined by the lifetime of its “weakest” link.
A wireless link on the VANET context will be available until
the channel quality deteriorates so much that it drops below
a given communication threshold. This reduces the problem
of estimating RRT to the estimation of the remaining time for
which a link’s quality will remain above the specified threshold,
which is defined as the link residual time (LRT).

The importance of ploiting the nonrandom behavior of the
nodes’ mobility patterns to construct long-lived routes and com-
bat frequent communication disconnections was established in
[2], where the authors propose the utilization and dissemina-
tion of GPS information to calculate the expected connection
duration and demonstrate significant performance enhancement
when the routing procedure provisionally takes lifetime into
account.

Recent research has unveiled route lifetime as an important
performance factor for VANETs. If the established routes are
short lived, then the route reconstructions will more frequently
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be necessary. In addition, there is no guarantee that the new
route will not fail immediately or very shortly after its estab-
lishment, causing a series of successive route reconstructions
and giving rise to a “ping-pong” behavior. This problem has
been underlined in [1], where the authors note that VANETs
suffer from a very limited network diameter, as many routes
fail before they can be utilized, and in [3], where the authors
observed the same behavior in practical implementations of
typical MANET protocols. This degrades the performance of
developed routing algorithms and implies that there is a signif-
icant routing overhead to no avail, introducing further delay in
the establishment of the required route and hindering existing
communication in the network. The failure of a single radio
link is sufficient to render an established route unusable; since
one link might be part of multiple routes, several route recon-
structions will be necessary at the same time, incurring the cor-
responding overhead and resulting in extended delivery delay
[4]. Specifically for links active in transmission control protocol
(TCP) connections, frequent link disconnections cause abnor-
mal TCP behavior [5]. The packet loss will trigger the conges-
tion mechanism of TCP, decreasing the throughput even further.

Our goal is to develop a method that produces a link-
lifetime-related metric using only physical layer information
yet capable of capturing the remaining lifetime of a link in
the VANET context accurately enough so that it can be used
as a route construction metric. The motivation of this paper
lies in the need for a link lifetime metric based on physical
layer measurements, which would be suitable for inclusion in
cost functions used for route construction. Using physical layer
information lifts the assumption of accurate knowledge of the
position and velocity vectors of all the nodes and offers the
advantage of accommodating for varying transmission power,
nondeterministic radio range, and various mobility models. To
the best of our knowledge, utilization of physical-layer-related
information in VANET routing has been limited to providing
criteria that facilitate the exclusion of certain links from the
routing decision,1 or the initiation of handoffs, rather than
developing a metric that can be used as a route construction
criterion. In other words, existing link quality metrics have not
been demonstrated to optimize route construction with respect
to the link lifetime but have rather focused on eliminating links
that are expected to have a very short lifetime or on predic-
tors supporting provisional route reconstructions. The proposed
routing protocols, which explicitly include route lifetime as a
metric for route construction, derive the expected lifetimes via
node location and velocity information, such as [2], or assume
knowledge of the link lifetimes via an oracle, as in [4]. In terms
of forming routes in wireless networks, it has long been argued
that the “shortest path is not enough” [6], and therefore, the
proposed methods are intended as a tool for serving the purpose
of using alternate objectives when constructing routes.2

1Either direct exclusion of existing radio links or division of the existing links
in “good” and “bad,” where “good” links are favored, and “bad” links are used
only when necessary.

2Alternate is to be understood in the sense of either 1) using only the
proposed metrics or 2) combining them with traditional metrics (e.g., hop
count).

Our contributions include the development of a “black box”
method, which is intended to provide a tool that can be utilized
to increase the robustness of protocols and schemes against
rapid topology changes and short-lived links. The advantages
of this method over existing work, which is based on signal-
to-noise ratio (SNR) or received power measurements, include
the following: 1) the potential to acquire estimates over the
whole duration of the link for both improving and deterio-
rating link quality; 2) accurately capturing the effect of the
minimum distance achieved between the nodes on the link’s
lifetime; 3) accurately capturing the rate of change of the
separating distance between the nodes, which is not always con-
stant, even for constant relative speed between the nodes; and
4) offering the possibility to lift the assumption of knowledge
of the transmission power or the path loss exponent. To the best
of our knowledge, our study is the first to explicitly evaluate
the adverse effect of shadow fading on the estimations. In
addition, we present a framework that analytically quantifies
the comparison capabilities of the estimates based on the accu-
racy level (i.e., on the probability distribution function of the
error).

The rest of this paper is organized as follows: Section II gives
an overview of related work, and the framework for estimating
LRT is presented in Section III. More specifically, the problem
is formulated in Section III-A, where we elaborate on the
desired attributes of the solution. We continue to study the
underlying structure of vehicle movement in Section III-B and
derive the LRT estimation model in Section III-C. The scheme
for analyzing the capability of correct identification of the link,
which has the longest LRT among two given links, is presented
in Section IV. We evaluate the accuracy and identification
capabilities of the proposed method, comparing it with affinity-
based schemes in Section V. Section VI continues to propose
how the LRT estimates can be used for VANET routing and
evaluates the effectiveness of the method for route construction,
isolating it from route maintenance, when optimizing for longer
lifetime. To this end, we present and use a modified version
of Dijkstra’s algorithm to find max–min paths in a connected
graph. This paper concludes with Section VII.

II. RELATED WORK

The problem of routing through paths of higher lifetime,
which entails the estimation of the links’ lifetimes and the
routing decision process, has been the topic of several recent
studies. As far as the link lifetime estimation methods are
concerned, related studies can largely be divided into three
categories: 1) methods that assume knowledge of the other
nodes’ positions and velocity vectors (such as [2], [7], [8],
or [9]); 2) analytical methods based on the extraction of
lifetime distributions (such as [10] or [11]); and 3) methods
that make use of some link quality metric (such as [12]–[16]
or [17]).

In general, methods of the first category require use of
additional equipment, whereas the transmission range of the
nodes is considered deterministic and known a priori, assuming
a free space propagation model and a fixed known value of
transmission power. However, being within range, as this is
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specified based on this assumption, does not always guarantee
radio connectivity, particularly in an urban environment. The
methods proposed here include transmission power as a pa-
rameter, which is to be estimated by the methods themselves.
Moreover, the information acquired via GPS might be inaccu-
rate. Methods targeting at analytically extracting link lifetime
distributions naturally operate under the assumption of specific
mobility models, such as the random waypoint model, and are
thus applicable only to these cases when the vehicles follow
the mobility model, on which the analysis has been based on.
Utilizing information related to the quality of the radio link
to construct reliable routes offers an immediate way to exploit
the direct coupling of physical layer operations to the network
topology. There exist approaches, such as [12], [13], or [14],
employing the exponentially smoothed value of the received
power or SNR of ongoing packets. Such a criterion focuses
more on the past observations without extrapolating in the
future, and thus implicitly assumes a stable grouping of the
nodes, and the existence of neighbors with similar mobility
characteristics, which may not always be the case in such
a dynamic environment. Although SNR is a strong indicator
of the instantaneous link quality and may thus, under certain
conditions, imply larger momentary throughput, utilizing the
smoothed SNR as a metric for route construction does not
necessarily lead to longer-living routes (see Section VI-B).

Different approaches, such as [15], [16], or [17], make use
of the time derivative of the received power or SNR of the
monitored packets. These methods may successfully capture
the temporal trend of the link quality but cannot always be used
to make an informed choice between two given links. In addi-
tion, the temporal dependence of link quality is not linear, as
dictated by the path loss exponent and the underlying structure
of vehicle movement. Finally, explicit use of the time derivative
is very sensitive to noise, which will inherently affect channel
measurements due to multipath and shadow fading. Given the
challenging propagation environment in which VANETs are
operating, using the instantaneous rate of the link quality to
extrapolate into the future may lead to erroneous estimates.
We elaborate more on the technical details and deficiencies of
affinity-based methods in Section V-C.

III. FRAMEWORK FOR LINK RESIDUAL-TIME ESTIMATION

A. Problem Formulation and Analysis

Assuming a given radio link between nodes moving rela-
tively to one another, the link quality on the large scale will
successively improve (improving phase), reach a maximum
value, and then start deteriorating (deteriorating phase) until
communication is no longer possible. We have defined LRT
as the remaining time that a given link will continue to be
useful for satisfactory data transmission. This translates into
the residual time for which the link quality on the large scale
should continuously remain above a specified threshold. We
take a cross-layer approach, where physical layer knowledge
is utilized by having the nodes monitor the link quality on
incoming and overheard data packets, pilot symbols, and/or
acknowledgement packets so that a time series is formed at

every node for each of its neighbors. This way, no overhead
in terms of traffic is introduced in the network. The problem
is formulated as follows: Given the time series of a link quality
metric (tj , S(tj)) on a specific link, estimate the remaining time
before the link quality S(t) drops below the specified threshold.
We address this problem as a parameter estimation problem:
The parameters we want to derive out of the SNR samples are
related to large-scale path loss, treating random variations on
the received power level as noise. The estimated parameters can
then be used to predict the time point when the link quality on
the large scale will drop below the specified threshold and, thus,
produce estimates of the LRT. In the following, we elaborate on
the desired attributes of an LRT-related metric, describe specific
challenges arising, and summarize the way we have addressed
the relevant requirements.

First, since we want to derive the distance-dependent part of
the path loss, multipath and shadow fading introduce consid-
erable noise in the collected time series, hindering the accu-
rate extraction of the desired parameters. We aim to produce
methods robust to these sources of noise. The use of the time
derivative, as proposed in existing work, may be highly prob-
lematic; as will be pointed out in Section V-C, the performance
of existing affinity-based schemes significantly drops when
considering multipath fading. To the best of our knowledge, this
paper is the first approach to explicitly evaluate the performance
of the developed estimation methods under various scenarios of
channel fading. Furthermore, the fact that we are only able to
sample the channel condition when the link is active3 results
in limited knowledge of the underlying signal. For these two
reasons, our methods utilize as much of the collected data as
possible via nonlinear regression, contrary to existing methods
that rely on instantaneous data, and are thus more sensitive to
deep fades in the channel link quality.

Second, since we aim to use the link lifetime estimations for
optimizing the route lifetime, the proposed metric needs to go
beyond describing the tendency of the future quality of given
links and be capable of capturing the remaining link lifetime
as accurately as possible. For this reason, we employ a model
that exploits the underlying characteristics of radio propagation
and vehicle movement. We introduce a model describing the
temporal dependence of link quality, which allows for the
inclusion of the following factors: 1) the fact that link quality
does not vary linearly with the separating distance between
the nodes, but the respective rate of change is dictated by the
path loss exponent, and 2) the fact that when the nodes no
longer move along the line defined by their positions, the rate of
change of their separating distance does not equal the relative
speed between them.

Most importantly, the nature of route construction implies
that the metric should ideally support the possibility of making
an informed choice between any two given links. The main
advantage of the model presented here is that it can be used
to produce estimates of the LRT even during the improving
phase of a radio link. Existing work using the time derivative
of the link quality metric (affinity-based schemes, such as [15]

3Either through transmitted packets or pilot symbols and receipt
acknowledgements.
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or [16]) implicitly assumes that any link in an improving phase
is more reliable than a link in a deteriorating phase. This,
however, is not true as the link reliability also depends on the
relative speed between the nodes and on the peak value of the
received power or SNR. Elaborating on the latter, the remaining
link duration during the improving phase is conditional on the
time point when the link quality starts deteriorating (which is
the time point on which the peak value of the received power
or SNR will be accomplished). In [17], a method, based on
utilization of the signal strength changing rate, is presented,
predicting the remaining time even during the improving phase
of the link, but the model used assumes that the minimum
distance that will be achieved among the two nodes is zero,
whereas the transmission range and the path loss exponent are
considered known. The improved accuracy of the proposed es-
timation method stems from the incorporation of the minimum
distance achieved during the nodes’ movement as a parameter
in the link quality model used. This enables us to extrapolate on
the future throughout of both phases.

B. Underlying Structure of Vehicle Movement

The proposed method’s increased accuracy and the model’s
ability to quantify the links’ residual time even during the im-
proving phase lie in the incorporation of the minimum distance
achieved during the nodes’ movement as a parameter to be
estimated by the method. The main difference with respect to
our previous work in [18]–[20] is that the model developed here
is used to derive an estimate of the minimum distance between
the nodes, even before this has been achieved, i.e., before the
maximum value of the received power has been reached. This is
of crucial importance as knowledge of the time point when the
link quality reaches a maximum value enables us to extrapolate
the future value of received power on the large scale even
throughout the improving phase of the link. We achieve this by
using the Pythagorean theorem to express the physical distance
between the nodes as the sum of the squares of the minimum
distance achieved and the distance of the mobile from the origin
of a specific axis. The axis is chosen so that the distance of the
mobile from the origin linearly varies with the mobile’s speed,
thus integrating the temporal dependence on the link quality
model.

Due to the nature of the problem, it is the large-scale phe-
nomenon (path loss) that we are trying to capture and predict,
namely, the change in channel quality (either attenuation or
amplification) caused by the change in the relative distance
between sender and receiver. However, the distance between the
transmitter and the receiver is not assumed to be known to the
individual nodes. In contrast, what we have available is a time
series of samples of SNR and the time points when these were
monitored, i.e., (ti, Si). Hence, we need a model that employs
time as the independent variable. To this end, we are proceeding
to acquire a model for the dependence of the separating distance
with time. Let us consider two mobile nodes a and b, as shown
in Fig. 1(a). As explained, we are interested in acquiring an
expression of the temporal dependence of the distance between
them as they are moving on the xy plane. Let va = (va,x, va,y)
and vb = (vb,x, vb,y) denote the velocity vectors of mobile

Fig. 1. Relative motion of two mobile nodes a and b.

nodes a and b, respectively.4 In addition, let Sa,0 = (xa,0, ya,0)
and Sb,0 = (xb,0, yb,0) denote the position vectors of the nodes
at time t0, and let d0 = |Sa,0 − Sb,0| denote the initial distance
between them. It follows that the temporal dependence of the
separating distance between the nodes is given by

d(t)=
√

(Δx0+Δvx(t−t0))
2+(Δy0+Δvy(t−t0))

2 (1)

where Δk0 = ka,0 − kb,0, and Δvk = va,k − vb,k, with k =
{x, y}. Based on (1), the minimum distance that will be
achieved between the nodes during their movement depends on
their initial positions and their velocity vectors and is given for
tm = −(Δx0Δvx + Δy0Δvy/(Δvx)2 + (Δvy)2) + t0 as5

dmin = d(tm) =

√
(Δy0Δvx − Δx0Δvy)2

(Δvx)2 + (Δvy)2
. (2)

The minimum distance that will be achieved between the
nodes, which is usually considered negligible in similar studies,
is a factor that affects the link lifetime significantly. As an
example, we note here that for any value of relative speed,
the link duration increases by 80.28% of its value when the
minimum distance achieved changes from 100 to 10 m (for a
range of approximately 120 m).

Based on (1), we proceed to derive the relationship between
the separating distance between the nodes over time and dmin.
Without loss of generality, we consider node a to be stationary;
node b’s motion will then be specified relative to node a. We are
performing two consecutive transformations6 in the Cartesian
plane so that node b moves on the horizontal axis and node a
resides on the vertical axis [see Fig. 1(b)]. This means that the
minimum distance will be achieved when node b passes through
the origin. Node b’s motion will now be described by the veloc-
ity vector u = (ub,x, ub,y) = (

√
(vb,x)2 + (vb,y)2, 0). Based

on the coordinate system in Fig. 1(b), we obtain the following
relationship for the temporal dependence of the distance:

d(t) =
√

d2
min + (ub,x(t − t0) − l0)

2 (3)

4For the following, we are assuming that the velocity vectors remain constant
and that at time t0 the two nodes are approaching each other.

5The first derivative of the separating distance with respect to
time is equal to θd(t)/θt = (Δx0 + Δvx(t − t0))Δux + (Δy0 +
Δvy(t − t0))Δvy/d(t). The distance is minimized at time point tm, as
(θd(t)/θt)|tm = 0, and (θ2d(t)/θt2)|tm = ((Δvx)2 + (Δvy)2/dmin) >
0. It should be noted that tm is strictly positive based on the fact that
we have assumed the nodes to be approaching each other at t0; thus,
the temporal derivative of the distance at t = t0 should be negative:
(θd(t)/θt)|t0 = (Δx0Δvx + Δy0Δvy/d0) < 0.

6A rotation so that b moves parallel to the xx′ axis and a translation so that
the movement coincides with the xx′ axis. This results in node a residing on
the vertical axis.
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where l0 is the distance of node b from the beginning of the
axis system shown in Fig. 1(b) at time t0 (the time when the
link between the nodes was established). We note that (3) is
indicative of the fact that the separating distance will only vary
linearly with time when dmin → 0.

C. Link Residual-Time Estimation Model

A widely used model (see, for example, [21]) for the received
power on a wireless link is the following:

PR(d) = P0 − 10γ log(d) + φR + φS (dBm) (4)

where P0 denotes the received power at a reference distance
dr = 1 m, depending on the transmitting power and the gains
of the transmitting and receiving antenna, and γ is the path loss
exponent factor, depending on the environment. The variations
caused by multipath fading are denoted by φR, whereas φS

represents the changes on the level of the received power due to
shadow fading. Assuming additive white Gaussian noise with
a mean power of N0 (dBm), the SNR can be modeled with
respect to the nodes’ separating distance d as

SNR(d)=P0−10γ log(d)+ε − N0 =SNR0−10γ log(d)+ε
(5)

where SNR0 denotes the SNR on the large scale at a reference
distance dr = 1 m. Shadow- and multipath-fading-induced
variations are denoted by ε to indicate that our method does
not aim to derive estimates of these parameters. As LRT is
calculated on a higher timescale, random channel variations
are considered to introduce noise in the collected time series,
hindering the accurate extraction of parameters related to LRT
estimation. Combining (3) and (5), we derive the following
model for the temporal dependence of SNR on the large scale
(i.e., without taking random fluctuations into account):

SNR(t)=SNR0−5γ log10

(
d2
min+(ub,x(t−t0)−l0)

2
)

. (6)

Solving for t when SNR(t) = SNRth, where SNRth is the
SNR value below which the link cannot be used for communi-
cation, (6) gives the LRT as

LRT(t)=

√
10(SNR0−SNRth)/5γ−d2

min+l0
ub,x

−(t−t0). (7)

The method comprises of using the time series to regress on
(6), acquiring the parameters that dictate the change in SNR
on the large scale and plugging them in (7) to acquire the
estimates of the LRT. The nonlinear least-square estimation
method used to acquire the estimates of the parameters is a
subspace trust region method based on an interior reflective
Newton method. The nonlinear least-square regression method
utilizes (6) and the collected time series, where time and SNR
are the independent and dependent variables, respectively. The
parameters that are to be estimated are the received SNR at the
reference distance SNR0, the minimum distance achieved dmin,
the relative speed between the nodes ub,x, the initial position of
node b on the χχ′ axis l0, and the path loss exponent γ.

IV. IDENTIFICATION CAPABILITY FRAMEWORK

When using the LRT estimation method for the purpose of
routing, the merit of evaluating the proposed model does not
lie so much on the absolute accuracy achieved but rather on the
estimates’ capability of comparing different links and correctly
identifying the one that will last longer, i.e., the one with the
largest LRT. In this section, we are presenting a framework that
may be used to analytically quantify the identification capabil-
ities of an LRT estimation method based on the probability
distributions of the estimation errors, i.e., on the analytical
expression of the method’s accuracy in capturing LRT.

For the following, let Tm and Tn denote the actual LRTs of
two links m and n, and let T̃m and T̃n denote the corresponding
estimates. The uncertainty in the LRT estimates can be repre-
sented by a random variable that follows the distribution of the
error. We therefore define a family of random variables, which
is denoted by Ek : ΩEk

→ R.7 It follows that the estimates
themselves are random variables, i.e., as the sum of two random
variables

T̃k = Tk + Ek. (8)

We are then interested in the probability that the LRT esti-
mates will maintain the relative order of the actual LRTs. We
define a function I : ΩT × ΩT → [0, 1], i.e.,

I(m,n) =

⎧⎨
⎩

Pr(T̃m > T̃n), if Tm > Tn

Pr(T̃m < T̃n), if Tm < Tn

1, if Tm = Tn

(9)

which gives the probability of taking the correct decision, when
using the LRT estimates with the aim of choosing the link
of the longest actual LRT, between links m and n. Based
on the distribution of the errors fEk

, we can calculate the
value of I . Without loss of generality, let us examine the case
Tm > Tn, i.e.,

I(m,n) = Pr(T̃m > T̃n) =

∞∫
Tn−Tm

fm−n(u)d(u). (10)

Given the distributions fEk
, the distribution of the difference

of the errors Em − En, which is denoted by fm−n, is equal to
the cross correlation of their distributions, i.e.,

fm−n(u) =

∞∫
−∞

fn(τ)fm(τ + u)dτ = fn � fm. (11)

It follows that the lifetime of the link chosen based on the
estimates of LRT is also a random variable, which is denoted by
L. The conditional expected value of the lifetime of the chosen
link L on the actual LRT values of the candidate links Tn and
Tm is given by

E[L|Tn, Tm] = I(m,n) · max(Tm, Tn)

+ [1 − I(m,n)] · min(Tm, Tn). (12)

7The index k indicates the error distribution for T = Tk .
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Based on this, we can now calculate the expected value of
the lifetimes of the links chosen based on the LRT estimation
method as

E[LLRT] =
∫

ΩT

∫
ΩT

[I(m,n) · max(Tm, Tn)

+ (1 − I(m,n)) · min(Tm, Tn)]

· fT (Tm)fT (Tn)dTmdTn. (13)

To numerically evaluate the optimality of the method, we
also calculate the expected value of the lifetimes had the links
been chosen based on an oracle, which would always opt for
the longest living link, i.e.,

E[LO] =
∫

ΩT

∫
ΩT

max(Tm, Tn)fT (Tm)fT (Tn)dTmdTn (14)

as well as the expected value of all residual lifetimes to serve as
a benchmark that represents the average case, i.e.,

E[L] =
∫

ΩT

tfT (t)dt. (15)

V. VALIDATION OF LINK RESIDUAL TIME ESTIMATION

A. Technical Details

For the following, we are considering a link between two
nodes, one of which is moving relative to the other, as shown
in Fig. 1(b). As we have shown, this scenario can adequately
describe the change in the separating distance of two nodes
moving on the plane, each maintaining a constant speed. The
received power at the reference distance is taken to be equal to
P0 = −17 dBm, whereas the noise level is considered to be at
N0 = −95 dBm, and the threshold for efficient communication
is set at SNRth = 5 dB. These values are consistent with the
assumption of 802.11g, resulting in a range of approximately
120 m. We are assuming that any packet above 0 dB can be
detected and therefore used by the method. We assume that
physical layer information is passed on to the algorithm every
T = 250 ms in the form of the mean SNR over all packets
received on that link during this time interval. When there is no
traffic on the link, or when the data packet interval is larger, the
method can still make use of the “hello” packets, which are an
integral part of ad hoc network protocols. However, when the
instantaneous channel conditions cause the received power of
all the transmitted packets to fall below the receiver’s detection
threshold, there is no data available, and the estimation method
uses previously collected data. The latter is captured in the sim-
ulation results presented in the following. The main rationale
for examining the performance of the method when averaging
the SNR samples over T is that in practice the method would be
rather computationally demanding if it were applied every time
a new packet is received. The packets are sent at random time
points with a rate of λ = 0.1. The path loss exponent γ is taken
to be equal to 3.5.

Fig. 2. Normalized error versus speed for different values of dmin.

For the case of multipath fading, the envelope of the received
power is assumed to follow a Rayleigh distribution for nonline-
of-sight conditions or a Rician distribution in the case when
there exists a line of sight between transmitter and receiver.
It must be noted that the Rician distribution can be controlled
by the Rician k factor, which is a parameter that controls the
ratio of the average received power via the line-of-sight path
versus the average power received through other paths. For the
simulations, multipath fading is modeled via use of a filter that
produces the Jakes Doppler spectrum [22], which is consistent
with the predictions of the widely used Clarke’s model for the
mobile radio channel. For implementation details, see [23].

When modeling shadow fading, it is important to take the
spatial cross correlation into account. The correlation distance
(which is denoted by LC) under a mobile node(s) scenario is in-
dicative of the (temporal) rate of change of the shadowing level
and depends on the sizes of the obstacles, i.e., other vehicles,
buildings, trees, etc. For the following simulations, we follow
the approach taken in [24], exploiting the fact that interpolation
is a standard way of introducing correlation. We generate uncor-
related values drawn from a zero-mean Gaussian distribution
with the desired standard deviation σ assuming that the sample
spacing is equal to the correlation distance. We then perform
interpolation between these samples, introducing correlation to
the uncorrelated generated values, to obtain the value of shadow
fading at required locations. The interpolation can take place
down to a specific sampling rate to generate the required time
series or only on the separating distance corresponding to the
time of data transmission, thus enabling efficient integration to
a large-scale simulation, as in Section VI-B.

B. Estimation Accuracy

In this section, we briefly present the results related to
the accuracy of the estimation methods to demonstrate how
different characteristics of the vehicles’ movement might affect
the error in the estimates of LRT. Fig. 2 shows the normalized
time average error in LRT estimation as a function of the
relative speed between the nodes for different values of dmin.8

To assess the accuracy of the estimates, we are using the
mean9 time average10 error normalized by the link duration.

8Each point shown has been averaged over 20 different Monte Carlo itera-
tions of a Rician fading channel.

9Over different Monte Carlo iterations.
10Over the successive estimates.
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Fig. 3. Empirical cdf for the normalized errors when u = 12 m/s.

In addition, we plot bars indicating the standard deviation of
the normalized error. We note that although the mean value
of the normalized error is around 6% for dmin = 20 m and
4% for dmin = 50 m, the corresponding median values are
smaller than 2% and 3%, respectively. This indicates a higher
variability for dmin = 20 m. The variability in the accuracy
of the estimates can be seen in Fig. 3, where we plot the
empirical cumulative distribution function (cdf) of the normal-
ized errors acquired during the whole duration of the link for
20 Monte Carlo iterations, when the relative speed is 12 m/s.
This variability in the accuracy is due to different Monte Carlo
iterations while also indicative of the fact that the accuracy will
initially fluctuate until a sufficient number of samples has been
acquired. In general, the relative speed does not seem to affect
the relative accuracy significantly. The absolute error, however,
drops for larger values of the relative speed as the temporal
dependence of the SNR becomes more evident faster and thus
is easily detectable with fewer SNR samples. It should also
be noted that the number of estimations that have taken place
may considerably differ when examining links among mobiles
whose relative motion is described by different parameters
(dmin, ub,x).

C. Identification Capabilities

We are comparing the identification capabilities of the LRT
estimates with an affinity-based scheme (such as in [15] or
[16]), which makes use of the time derivative of the SNR
(or signal strength). The affinity between two nodes, which is
denoted by n and m, is given by

an,m =
{

high if ΔSn,m > 0
SNRth−Scurr
ΔSn,m/Δt , otherwise (16)

where Scurr is the currently reported SNR at the link in ques-
tion, and ΔSn,m/Δt is the rate of change of the SNR on
the link, averaged over the last few samples. As has already
been mentioned, affinity-based schemes do not quantify the
link lifetime when the nodes are approaching each other and
cannot therefore be used to make an informed decision be-
tween two links that are both in an improving phase (positive
changing rate of SNR). However, the relative velocity vectors
and the minimum distance achieved vary between different
pairs of nodes; thus, it is not guaranteed that a link going

through an improving phase will last longer than one whose
link quality is decreasing. Although the rate of change of the
link quality metric may successfully capture the tendency of
a link’s condition, we have found that when used to compare
two links, it can lead to unfair conclusions. The rate of change
of the SNR is not constant throughout the duration of the
nodes’ movement (that is, SNR will not linearly change with
time). When measured in watts, we have SNR ∝ (1/d(t)γ)
[25], where d(t) is the separating distance between the nodes,
which varies with time.11 It follows that the rate of change
of the SNR will vary with time according to Δ(S/Δt) ∝
−(γd′(t)/dγ+1(t)). Similarly, measured in decibels, we will
have (ΔS/Δt) ∝ −(γd′(t)/d(t)). When using the current rate
of change to extrapolate into the future, links of nodes that
are closer physically will be characterized by a smaller affinity
than they should. In addition, the fact that affinity is not
quantified for positive values of the rate of change may be
problematic. Depending on the relative speed between nodes
or the minimum distance that will be achieved between them, a
link la such that ΔSla > 0 may have a much smaller residual
lifetime than a link lb with ΔSlb < 0. Finally, the explicit use
of the time derivative severely decreases the reliability of the
estimates under the variations caused by channel fading. We
will now demonstrate these deficiencies through comparing the
identification capabilities of the proposed method and affinity-
based decisions. We are also presenting the lifetimes achieved
under a scheme agnostic to LRT (13) and the lifetimes achieved
under an oracle (14) to serve as benchmarks.

To calculate ΔSn,m/Δt, we follow [15], where N previous
samples are used to calculate the mean rate of SNR with respect
to the current sample. Since the previous studies do not identify
a specific value for N (the number of previous samples used
for affinity calculation), we present the results for N ranging
between 1 and 20. The value of N is restricted by the duration
of the links under examination.12

We produce LRT estimates and calculate the affinity every
250 ms for each link13 during the whole link duration (when
SNR ≥ SNRth). All the estimates produced during the duration
of the link are used. Links are chosen based on the calculated
affinity as follows: If both links are in an improving phase
(high affinity) we choose randomly, then links of high affinity
are always preferred over links with deteriorating link quality,
whereas when the affinity is not high for any of the two links,
we opt for the link of higher affinity value. The LRT estimation
method uses the model described in (6) and the time series of
the received power of collected packets real-time to produce
estimates of five parameters: 1) the SNR at a reference distance
SNR0; 2) the path loss exponent γ; 3) the minimum distance

11The dependence of the separating distance with time is not always linear
but depends on dmin.

12Since the calculation of the derivative should be limited to either improving
or deteriorating phase to give meaningful results, N cannot cover more than
the duration of a single phase and, ideally, should not extend to more than one
phase. The value of N = 20 is equivalent to 5 s, since we take samples every
250 ms. We note that the phase durations for the scenarios examined reach
down to this value.

13We are simulating mobile radio links for different scenarios of the nodes’
movement. The relative speed between the nodes varies between 2 and 20 m/s,
whereas the minimum distance achieved ranges from 10 to 100 m.
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TABLE I
EXPECTED VALUES OF LIFETIMES

achieved dmin; and 4) the relative speeds of the nodes ub,x and
l0. These estimates, which are produced every T seconds, are
plugged in (7) to produce the LRT estimates used as a factor to
choose the longest living link. In total, the pairs of links used
are in the order of 55 · 106.

Table I shows the expected values of the lifetimes achieved
under different decision mechanisms for different channel con-
ditions. First, we evaluate the efficiency of the methods in
the (ideal) situation when the channel is affected by neither
multipath nor shadow fading to illustrate the suitability of
the proposed model as a route construction criterion and to
enable comparison with other methods when the results are
not affected by noise. The packets are assumed to be sent
instantly every T = 250 ms. We can see that the identification
capabilities of the LRT estimates acquired under the proposed
model (6) are practically identical with that of an oracle that
always opts for the longest living link. This reflects the suit-
ability of the metric for utilization in route construction func-
tions. The affinity-based scheme, however, fails to consistently
identify the longest living link among two, resulting in a much
smaller mean lifetime value than the LRT-based decision. For
ideal channel conditions, the best value for N seems to be 1,
meaning that it is preferable to calculate the changing rate
over the last pair of observations only, avoiding the use of
stale information.

We can also see that the LRT-based decision is robust to
noise, achieving to choose links of average lifetime equal to
98.9% (under Rician fading) and 97.9% (under Rayleigh fad-
ing) with respect to E[LO]. The affinity scheme is, as expected,
very sensitive to the noise induced in the measurements by
multipath fading due to the explicit use of the time derivative.
We can see that the lifetimes achieved under the affinity-based
scheme are much closer to the corresponding value given by an
agnostic scheme (random decision) than they are at the optimal.
In addition, the merit of using more samples to calculate the
changing rate is now evident. As opposed to the results under
ideal channel conditions, the affinity-based scheme seems to
perform better for bigger values of the parameter N , which
controls the number of samples used for the time derivative
calculation. However, as has been mentioned, the value of N
is restricted by the link duration. To evaluate the merit of
utilizing a link lifetime criterion, we note that the proposed
LRT estimation method results in the choice of links that last
50% or 48.7% longer when compared with an agnostic scheme
for Rician or Rayleigh fading, respectively. The corresponding
values for the affinity-based scheme are 21.8% and 13.9%
(calculated for the best-case scenario N = 20).

Shadow fading introduces significant challenges on the esti-
mations, as particularly for smaller values of the relative speed
between the nodes, and during the initial phase of the link,
it may dominate the temporal dependence of the channel’s
quality. This hinders the estimation algorithm from accurately
extracting the parameters of distance-dependent path loss.

Fig. 4(a) plots E[LLRT] (12), as a function of Tn and Tm,
normalized by E[LO].14 In addition, we plot the joint probabil-
ity density function (pdf) fTT (Tm, Tn) for the corresponding
values of Tm and Tn in Fig. 4(b) to illustrate how common
the appearance of each pair is. We can see that the estimation
methods achieve satisfactory results; for most of the pairs,
the ratio approaches 1. There is a drop in performance when
comparing links of residual lifetime close to 110 s with links of
smaller LRT. This phenomenon arises due to two main reasons:
First, the difference of the actual LRTs of the two links is
large, and therefore, even a small probability of misjudegment
has an adverse effect. Second, the existence of links whose
total lifetime was close to 110 s means that the corresponding
estimates of these specific links in this area were less accurate
as they were based on very few samples. Finally, the joint pdf
shows us that most pairs will be concentrated around values
smaller than 20 s, which means that the performance of the
comparison estimates for these pairs will affect the global per-
formance to a greater extent. To assess the effect of shadowing
to the identification capabilities of both the proposed estimation
method and the affinity-based scheme, we define the following
metrics:

m1 =
E[LLRT/AFF] − E[L]

E[L]
(17)

m2 =
E[LLRT/AFF]

E[LO]
(18)

where m1 gives the performance gain of using LRT estimation
(or the affinity-based scheme) compared with the average case
as a percentage, and m2, which is defined as the identification
efficiency, is indicative of the closeness of the corresponding
method to the optimal solution. Fig. 5 plots these metrics with
respect to shadowing standard deviation.15 The tendency of the
gain to decrease as shadow fading becomes more dominant
was expected, as a higher shadowing standard deviation means
that the time series used for estimation will be noisier; thus,
we expect the results to be less accurate. In all the cases,
the proposed method achieves to reach more than 93% of the
optimal value (as shown by m2), whereas the gain with respect
to the average case (metric m1) is larger than 42% for all
values of shadowing standard deviation. The metrics for the
affinity-based scheme (for the best-case scenario for N = 20)
stay above 79% and 5%, respectively.

14The results have been obtained based on 1000 Monte Carlo iterations of
links between nodes whose relative speed varies between 2 and 20 m/s and
which will achieve a minimum distance that ranges from 10 to 100 m. The
channel is affected by Rician (k = 8) and shadow (σ = 2 dB) fading.

15The pdfs have been calculated empirically based on simulating 400 differ-
ent channel realizations of a Rician fading channel with k = 8 and for values
of shadow fading ranging from 1 to 4 dB. The relative speed between the nodes
is uniformly distributed between 2 and 20 m/s, whereas the minimum distance
achieved ranges from 10 to 100 m.
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Fig. 4. Conditional expected value of the chosen link’s residual time normalized by max(Tm, Tn) and the joint pdf of Tm and Tn.

Fig. 5. Identification efficiency and performance gain metrics versus the
shadowing standard deviation.

VI. UTILIZATION OF LINK RESIDUAL TIME

ESTIMATES IN ROUTE CONSTRUCTION

This section is intended to serve as an application scenario
for the proposed method. We are examining the integration
of the proposed LRT estimation method in route construction
functions. We evaluate the efficiency of utilizing the estimates
under the presence of shadow fading and assume that the path
loss exponent is known based on previous measurements in the
area that the network is operating. It should be noted that in
this context, we are interested in evaluating the merit of the use
of LRT estimations in the initial route construction procedure,
isolating it from route maintenance. This obviates a frequent
need for route reconstructions, which are costly in terms of
bandwidth, achieving on the whole a better management of
network resources. Although the metric proposed may be used
in conjunction with other route construction metrics (e.g., ex-
pected throughput or minimum hop), examining the case when
LRT estimates are used as a sole metric for acquiring the routing
path allows us to demonstrate the true gain achieved. The
inaccuracy of the estimates, induced mainly by shadow fading
variations, implies that the estimated RRT will be less accurate
for longer routes. In that sense, not constraining the number
of hops allows us to demonstrate that despite the inaccuracies,
the estimates are robust enough and can indeed be used as a
route construction metric with the target of optimizing route
lifetime.

Our focus is not on evaluating specific routing protocols
but rather on comparing the lifetimes achieved under use of
different metrics. The minimum hop count represents most
existing VANET protocols, such as Ad hoc On Demand Dis-
tance Vector (AODV) protocol [26] or destination-sequenced

distance-vector routing [27], whereas the use of the smoothed
SNR is a commonly used metric for lifetime-based routing
(e.g., [14]). The lifetimes of the routes presented here are the
lifetimes that would be achieved under any VANET routing
protocol using the metrics under discussion, as the result of
the optimization would not change even if the specifics of the
dissemination (e.g., integration in a reactive versus a proactive
protocol) of routing information change. To this end, we have
devised a modification to the classical Dijkstra’s algorithm
[28]. The resulting algorithm identifies the max–min path in a
connected graph. The possibility to modify Dijkstra’s algorithm
to discover the longest living route implies that choosing the
route that maximizes the minimum LRT among the links is
not more complex than using a distance metric. It follows that
any routing protocol using a distance metric can directly be
modified to include LRT in its objective function. The results
of [4] give strong evidence that, when evaluating with respect
to route lifetime maximization, assuming the availability of
link characteristics in the source for simulation gives the same
insight as implementing a fully fledged routing protocol with
the same objective function. Given a connected graph G(t) =
(V,E(t)), where V denotes the set of vertices (mobile nodes)
and E denotes the set of edges (wireless links existing at time t),
and an LRT function l : E → R mapping edges (links) to
their residual times, the modified Dijkstra’s algorithm that is
employed finds a max-RRT path from a source node s ∈ V to a
destination node d ∈ V , as shown in Fig. 6. A similar problem
is studied in [4], where the algorithm proposed has a complexity
of O(N4), where N is the number of nodes in the network. The
modified Dijkstra’s algorithm presented here has a complexity
of O(N2). The proof of correctness is omitted due to lack of
space. Very briefly, the algorithm maintains two sets, i.e., U and
Q. U contains the nodes that have not yet been visited, whereas
Q = V [G] \ U . Temporary estimates of the max-RRT of all the
paths originating at s and ending at every vertex are maintained
in t. The corresponding predecessors are maintained in prev.
At the initial stage of the algorithm, all the vertices except
the source are considered unreachable. At the beginning of
every iteration of the while loop, the unvisited vertex with the
largest RRT estimate (denoted by t) u is extracted from U and
added to Q. If u happens to be the destination (vertex d), then
the max-RRT path has been found. Otherwise, we relax the
adjacent vertices16 by examining whether the estimated RRT of
a vertex can be improved if the path connecting s and d passes

16That is, node u’s neighbors.
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Fig. 6. Modified Dijkstra’s algorithm for max-RRT path.

through u. If this is the case, then the max-RRT estimate is
updated, and u is set to be the predecessor node.

An additional feature that can exploit the redundancy of
information resulting from the nature of LRT estimation can be
included: two nodes sharing a wireless link will not necessarily
have the same LRT estimate for the link in question. Because
each of the nodes has sampled the channel at different time
points, the estimates, which are based on the time series formed
by the received packets, may differ. For this reason, we examine
three different strategies as far as the definition of the nominal
LRT of a specific link is concerned: 1) pessimistic scheme,
where the smallest value of the two estimates is used; 2) neutral
scheme, where the mean value of the two estimates is used; and
3) optimistic scheme, where the greatest value of the two esti-
mates is used. Employing one of these schemes on the protocol
level implies that a node needs to be aware of the neighbor’s
estimate for the link they share. This information can easily be
included on the route construction or table update packets that
are part typical routing protocols for ad hoc networks.

On a different note, LRT estimation is an online procedure;
as has been mentioned, the initial estimates are based on a
very few samples and are thus generally prone to being less
accurate. To address this, we introduce a convergence criterion
to classify the estimates.17 The nodes multiply all the LRT
estimates produced before convergence has been achieved with
a constant ct, which is smaller than 1; the closer this constant is
to 1, the bigger trust we place on preconvergence estimates.

A. Technical Details

To evaluate the performance of the proposed estimation
method when used for route construction, in conjunction with
the proposed strategies, we have developed a simulation plat-
form in C++ and Matlab, where we can compare the lifetime
of the routes chosen by five different strategies: 1) minimum
hop, where the route chosen is the shortest path between the

17More specifically, three successive LRT estimates should not differ more
than three times the time interval between the time points on which those were
made.

Fig. 7. Model of the grid on which the nodes are moving.

source and the destination; 2) SSNR based, where the metric
used is the exponentially smoothed value of the SNR, i.e.,
SSNR,18 monitored on every link; 3) O-LRT, using the LRT
estimates and the optimistic strategy; 4) N-LRT, using the LRT
estimates and the neutral strategy; and 5) P-LRT, using the
LRT estimates and the pessimistic strategy. The nodes are
placed on a L × L square meter grid, with Lr meter wide
horizontal and vertical roads located at Lb meter intervals
(i.e., the grid consists of M Lb × Lb m2 building blocks), as
depicted in Fig. 7. We assume this area to be closed in the sense
that any nods leaving the area from the upper (left) side reenters
it on the lower (right) side with the same speed and direction
and vice versa. In addition, the distance between two nodes
following the trajectories (xa(t), ya(t)) and (xb(t), yb(t)) is
given by

√
x2

d + y2
d, where xd = min(|xa(t) − xb(t)|, |L −

|xa(t) − xb(t)|), and yd = min(|ya(t) − yb(t)|, |L − |ya(t) −
yb(t)|). This torus-resembling model of space has been used
in [29].19 At the beginning of each Monte Carlo iteration,
the nodes are placed randomly on the grid, and mobile nodes
are given a random direction and speed, where the latter is
chosen from a uniform distribution between 2 and 10 m/s. The
received power at the reference distance is taken to be equal to
P0 = −17 dBm, whereas the noise level is considered to be at
N0 = −95 dBm, and the threshold for efficient communication
is set at SNRth = 5 dB. Similar as before, we are assuming that
any packet above 0 dB can be detected. The packets are sent
at random time points, with a rate of λ = 0.1, and the SNR
value is aggregated every 250 ms. The path loss exponent γ is
taken to be equal to 3.5 and considered known to the method.
Depending on the relative location of the nodes on the grid at
any specific time point, a link is considered to be of good or
bad quality. Nodes moving on the same road segment or that
are close to road junctions20 are considered to be sharing a
good quality link. Fig. 7 shows the good and bad link areas

18SSNR = α SSNR + (1 − α)SNR, where we take α = 0.15. The route
chosen maximizes the minimum SSNR over the links constituting the routing
path.

19Note that there appears to be a typing error in the corresponding formula
in the original paper.

20Nodes that are not farther away than Ls meters from the closer junctions
of their neighbor.
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TABLE II
PARAMETERS USED IN INDICATIVE SIMULATIONS

TABLE III
MEAN VALUE OF LIFETIME (S)

for a node in darker and lighter shades of gray, respectively.
The standard deviation of shadow fading is taken to be equal to
σ1 = 2 dB for nodes sharing a good quality link and σ2 = 4 dB
otherwise, whereas the correlation distance is taken to be equal
to 5 m. Every Monte Carlo iteration lasts for 750 s. During the
course of each iteration, 50 route requests are made, and routes
are chosen based on the five different algorithms. The source
and destination nodes are chosen randomly. The routes are then
monitored,21 and their lifetimes22 are recorded.

B. Evaluation

For the sake of analyzing the behavior of the different route
construction strategies with respect to the lifetime of the re-
sulting routes, we run indicative simulations based on different
scenarios for different values of the grid’s parameters (LS , LB ,
LR, and L) and the number of nodes, which is denoted by N ,
as shown in Table II. For each scenario, five different Monte
Carlo simulations are ran. The mean lifetimes of the routes
chosen for the different scenarios are shown in Table III. We
observe that pessimistic LRT performs better or close to other
LRT strategies for all scenarios examined. The reason for this
is that, particularly before convergence,23 the estimation error
distributions are left skewed (larger positive values are much
more likely than negative ones), and therefore, the estimation
methods tend to exaggerate the values of LRT. We can also see
that all the LRT methods lead to routes of higher lifetime when
compared with minimum hop or smoothed SNR.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a method for estimating a
link’s residual time LRT. The method proposed is capable of
taking the inherent nonlinearities of the temporal dependence of
link quality into account and most importantly captures the ef-
fect of the minimum distance that will be achieved between two
vehicles on the course of their movement on the link duration.
In addition, it can produce LRT estimates regardless of whether

21We only monitor the cases where there was more than one possible route
between the source and the destination, which accounts for the vast majority of
the cases, as the nodes tend to form connected clusters.

22The time lapsed from the point of the route request until the point of the
first link breakage among the links that constitute the route.

23As discussed, proconvergence estimates are taken into account after being
multiplied with the trust constant ct, which is taken to be equal to 0.5.

the SNR of the link is improving or deteriorating over time. We
have shown that the LRT estimates can successfully be used
to identify the link with the longest LRT among two individual
links, outperforming existing affinity-based methods, under dif-
ferent channel conditions. The expected value of the lifetime of
the identified links based on the LRT estimates has been found
to achieve values above or close to 93% of the expected value
of the actual maximum lifetimes, whereas the same metric may
reach values down to 69% for affinity-based schemes. Finally,
we have demonstrated that the proposed estimation method can
be beneficial for identifying long-lived routes, leading to the
construction of routes that last much longer when compared
with routes constructed based on the smoothed SNR metric.

A fruitful direction for the continuation of this paper would
be to enhance the accuracy of the estimation methods by
combining them with the use of Doppler shift measurements,
knowledge of the nodes’ location, and velocity vector and/or
navigational information. The challenge would be to increase
the method’s accuracy, particularly under the presence of
shadow fading, and during the first few estimations, when the
link quality samples are very few. To this end, assuming knowl-
edge of the general channel characteristics, such as the level of
shadow fading, would also be beneficial. In the context of this
paper, we have assumed that the nodes’ speeds will not signifi-
cantly change for the duration of the link. To facilitate adaptive
parameter estimation, the mechanism described in [19] can be
used together with the model proposed here to ensure that stale
data are not used for the estimations. Newer estimates can then
be used for route reconstructions when necessary. In addition,
the predictions could be complemented with traffic statistics
(e.g., probability for change of direction) for the road on which
the vehicle is currently travelling or on knowledge of the route
that the vehicle is going to follow. The objective of the route
construction in this study was to maximize route lifetime, solely
with respect to the RRT, to accurately capture the gain achieved
under the proposed methods. A mechanism balancing the trade-
off between hop count and route lifetime, such as that described
in [4], would benefit network performance even further. We also
expect that constraining the number of hops during the route
construction process would yield even longer lifetimes for LRT-
based routing as the accuracy in the RRT estimates deteriorates
with the length of the route. Finally, the LRT estimations may
be utilized to increase the robustness of other network-related
functions, such as establishment of stable clusters, scheduling
decisions, or quality-of-service-related provisioning.
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